Orbit Feedback Using X-ray Beam Position Monitoring at the Advanced Photon Source

Glenn Decker

Argonne National Laboratory Advanced Photon Source AOD Diagnostics

- APS beam stability specification
- System overview
- Accomplishments to date
- Improvement plans

One Sector of the Advanced Photon Source Storage Ring

27.6 meters

(APS has forty sectors - 1104 meters total circumference)

Argonne National Laboratory Advanced Photon Source AOD Diagnostics

APS Beam Stability Specification

- 1) Original engineering specification 5% of CDR beam size values
- 4.5 microns rms vertical (@ ID source points)
- 17 microns horizontal
- 2) With present low-emittance lattice, (1% coupling) this amounts to
- 590 nm / 120 nanoradians rms vertical <-----
- 12.6 microns / 900 nanoradians rms horizontal

APS Orbit Correction System Components

- 360 broadband (monopulse) RF BPMs
- 48 narrowband RF BPMs (mounted on ID vacuum chambers)
- 48 insertion device X-ray BPMs
- 38 bending magnet X-ray BPMs
- 317 combined-function horizontal / vertical corrector magnets

APS Orbit Correction System Components (cont'd)

- 21 VME crates, each with 2 DSP boards [Pentek 4283 (TI C30 DSP), 4284 (TI C40 DSP)]for real-time feedback. [4285 (multi-C40 board) used in "master" crate.]
- One additional 4284 DSP board used in feedback crates for X-rayand narrowband RF- BPM data acquisition and filtering.
- Singular Value Decomposition (SVD) algorithm used in DC and AC systems.
- Workstation-based (DC) algorithm has 0.1 Hz closed loop BW
- Real-time (AC) algorithm operates at 1.5 kHz allowing closed loop bandwidth from 0.1 to 60 Hz
 - Access to 38 "fast" correctors
 - Access to all RF and X-BPM data (not all used in algorithm)

Legend:

C: Corrector Magnet

◆ RF Beam Position Monitor

P1,P2: X-ray Beam Position Monitors

Q: Quadrupole

BM: Bending Magnet

ID: Insertion Device

Config.	BPMs	Correctors
Global	11 RF (all)	2
Local - 1	P1 or P2	4
Local - 2	P1 and P2	4

Argonne National Laboratory Advanced Photon Source AOD Diagnostics

Bending Magnet and BPM Layout

Insertion Device and BPM Layout

Argonne National Laboratory Advanced Photon Source AOD Diagnostics

APS X-ray BPM Photoemission Blade Sensor Geometry

Argonne National Laboratory Advanced Photon Source AOD Diagnostics

X-bpm housing

X-Y Translation Stage

Noise Sources Impacting APS Orbit Stability

- Magnet power supply noise / ripple
 - Dominant source of beam motion
 - DSP-based regulator prototyped
- RF system high voltage power supply
 - Induces 360 Hz phase (energy) ripple + harmonics
- Thermal effects (Tunnel air / water temperature)
- Earth tides
- Mechanical vibration
 - Affects primarily horizontal beam motion
- Insertion device gap changes <-----

Variation of ID X-ray BPM Readbacks with Horizontal Position, Gap

AOD Diagnostics

November 28, 2001

Spectrum of Beam Motion Averaged over ID Source Points

Plots showing < 200 nanoradian rms vertical beam stability over a 5 day period **Colors indicate data for individual days**

AOD Diagnostics

November 28, 2001

Recently Completed Upgrades

- Replaced X-ray bpm data acquisition (86 channels, BM and ID)
 - Allowed factor of ten reduction in long term vertical drift
- Fabricated mobile X-ray bpm translation stage controllers
 - Allows for convenient and precise calibration of x-bpms

Upgrade Strategy

- Systems now in operation:
 - Real time feedback using monopulse RF bpms (0.1 30 hz closed loop bandwidth with 1.5 kHz data rate).
 - Software for reconfiguration of DC orbit control using arbitrary bpms, steering correctors, number of singular values, and bpm weights.
 - Software providing local steering on demand.
 - Vertical DC global orbit control using bending magnet x-bpms.

Argonne National Laboratory Advanced Photon Source AOD Diagnostics

- Things we know how to do and will do in FY02:
 - Increase update rate of "DC" correction algorithm from 0.4 Hz to 50 Hz or more
 - Involves addition of "data pool" IOC hooked into reflective memory network
 - Implement feedforward to reduce ID gap change induced orbit transients
 - Integrate insertion device x-bpms into global and local orbit control algorithms
 - Comprehensive understanding of systematic effects after two years' intensive study are well in hand

- Long range upgrade plans:
 - Incorporation of x-bpms and narrow-band bpms into fast feedback algorithm (This places a fundamental limit on vertical beam size / brightness)
 - Blade geometry optimization of ID x-bpms
 - Design of x-bpm's for dual-undulator sources

Conclusions

- APS orbit correction system is mature, integrating RF and X-ray beam position monitors.
- System uses > 60 DSP's tied together with real-time reflective memory network.
- Bending magnet X-bpm's are in operation for DC orbit control.
- Data pool IOC will allow integration of insertion device X-bpm's into DC orbit control ('fast' feedforward necessary)
- Integration of X-bpm's into 1.5 kHz global feedback will allow submicron orbit stability from "DC" to 30 Hz.

